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We report results from an experimental study of coarsening in thin layers of succinonitrile in the pres-
ence of impurities. By quenching the latter from the liquid phase to different temperatures within the
liquid-solid coexistence region, different solid area fractions ¢ are obtained. As ¢ is incresed from 0.13
to 0.40, liquidlike order develops among the coarsening crystals due to diffusional interactions. The
latter give rise to local correlations between the size and rate of growth of crystals within a neighbor-
hood of size £(¢). We study these and compare our findings with recent theoretical models of coarsen-

ing.

PACS number(s): 64.60.Qb, 64.70.Dv, 05.70.Fh

I. INTRODUCTION

When a homogeneous binary mixture is quenched to
sufficiently low temperatures it separates into two phases,
each characterized by a different concentration of the two
constituents [1]. The phase separation process starts in
off-critical mixtures by the nucleation of droplets of the
minority phase, which grow in size and number within
the majority phase. The volume fraction ¢ occupied by
droplets grows in time until the volume of both phases
nearly attains the equilibrium values as specified by the
lever rule. Finally, in the late stages of the separation pro-
cess, no more droplets form and the existing ones under-
g0 a coarsening process whereby big droplets grow at the
expense of small ones that shrink and disappear. This
coarsening process, known as Ostwald ripening [2], is
driven by the tendency of the system to minimize its total
surface energy, and is mediated by the diffusion of the
constituents. A mean-field theoretic description of
Ostwald ripening in three-dimensional systems was first
proposed by Lifshitz and Slyozov [3] and by Wagner [4]
(LSW), who assumed that the diffusion field around each
droplet is given by a solution to the diffusion equation for
an isolated spherical particle. This assumption is valid
only when the droplets of the minority phase are very far
away from each other, i.e., in a nearly zero volume frac-
tion situation, in which case a droplet’s rate of growth is
determined solely by its radius, and the degree of supersa-
turation of the majority phase. These two parameters
define a critical radius above which droplets grow and
below which droplets shrink. This assumption enabled
LSW to solve their model in an analytic and closed form,
and to obtain two predictions that can be readily tested in
an experiment. First, the average droplet radius R grows
with time ¢ as a power law Kr¢ with a=1 and the rate
constant K having a constant value depending solely on
the diffusion constant, the surface tension, and the degree
of supersaturation. Second, the distribution of droplet
sizes f(R,t) reaches a material-independent universal
form when properly scaled. LSW calculated this univer-
sal distribution within the framework of their model.
The value of a, which can be obtained by simple and very
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general dimensional arguments, has been amply
confirmed in numerous experiments [5—11] and numeri-
cal studies [12—-17]. However, these studies have also re-
vealed that K is much larger than expected, and that the
scaled size distribution is broader and more symmetric
than the shape predicted by the LSW model, even at
volume fractions of the order of a few percent. Worse, the
observed deviations increase with the volume fraction ¢.
Experiments have also shown that at high enough values
of ¢, the shape of the droplets is not spherical as assumed
by LSW and that the droplets may migrate as a result of
their interaction through their diffusion fields [18].

The origin of the discrepancies between the experimen-
tal observations and the LSW model lies in its basic as-
sumption. At finite values of ¢, the diffusion field around
a droplet assumed by LSW is perturbed by the presence
of other droplets [19]. The mutual influence of the
diffusion fields around two nearby droplets promotes the
accelerated shrinkage of one and growth of the other, the
rates of shrinkage and growth being larger than if both
droplets were isolated. Thus shrinking droplets are more
likely to be found in the neighborhood of growing ones
and vice versa. The rate constant is therefore increased,
and the rates of evolution of nearby droplets are correlat-
ed (medium polarization effect) [20]. Furthermore, small
droplets are more likely to be found near large ones
(direct correlation effect) [21,22]. These two effects are re-
sponsible for broadening the droplet size distribution.
These correlations complicate considerably any theoreti-
cal description, since many-body effects have to be incor-
porated. The problem has been tackled by various statist-
ical mechanical theories and numerical simulations that
introduce finite-¢ effects perturbatively (the appropriate
small parameter in the perturbation expansion being V'¢
as first recognized by Tokuyama and Kawasaki [21]), or
that assume that shrinking or growing droplets act as
pointlike sources or sinks (monopole approximation to
the diffusion field). The perturbative calculations are
quite complicated, and therefore have been carried out
only to first order in V'@, a fact that limits the validity of
these investigations to small values of ¢. Fortunately,
both the direct correlation effect and the medium polar-
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ization effect appear already to first order in V'¢ in the
perturbative calculations, and the behavior of the droplet
size distribution observed in experiments is reproduced
qualitatively. Notably, few experimental investigations of
Ostwald ripening in three-dimensional systems have pro-
vided direct evidence for correlations, beyond the
broadening of the size distribution function [18].

The main obstacle that has prevented the straightfor-
ward generalization of these ideas to two-dimensional
systems is the logarithmic divergence of the solution of
the two-dimensional diffusion equation for ¢ —0, where ¢
now denotes the droplet area fraction. The effects of this
divergence have been circumvented by Rogers and Desai
[23] who have performed an asymptotic analysis ap-
propriate for this limit, and found a generalization of the
LSW size distribution function, and that R ~(z/Inz)'/3.
In their approach, the only length scale in the problem is
the droplet radius. Models for ¢$70 (the relevant length
scales are now determined by ¢ itself and R) have been
put forward by various authors [17,24-29]. The picture
that emerges from these models is essentially the same as
for three-dimensional systems: the growth law R ~¢!/? is
not affected by correlation effects (a result that is support-
ed by computer simulations [17,30]), and the size distri-
bution function is increasingly broadened with ¢ (in some
of the models [17,26] the distribution function reduces to
the form obtained by Rogers and Desai in the limit
¢—0). As in three dimensions, these approaches fail for
¢~0.1 and above. Surprisingly, the problem of Ostwald
ripening in two-dimensional systems has not been an ob-
ject of much experimental scrutiny. Studies of coarsen-
ing in diblock copolymer films have not provided data in
the scaling regime, nor tackled the issue of correlations
[31]. Patterns of coarsening domains in amphiphilic
monolayers at the air-water interface exhibit dynamical
scaling, but a growth exponent below the LSW, presum-
ably due to the prominent role of electrostatic interac-
tions among domains [32]. Other studies have addressed
nonrelated issues [33].

In this paper we present the results of an experimental
study of Ostwald ripening in two dimensions for area
fractions ¢ in the range 0.13 <¢ <1, focusing our atten-
tion on correlation effects. OQur system consists of thin
layers of succinonitrile, quenched into the liquid-solid
coexistence region. A brief account of our findings has
already been published [34]. Our main goal has been to
exhibit correlation effects explicitly so that the results
will provide a benchmark against which the predictions
of the different theoretical models can be tested. A de-
cisive advantage of our experiments over those on three-
dimensional systems is that correlations can be measured
directly. In three dimensions they have to be inferred ei-
ther from stereological analysis of two dimensional cuts,
or from measurements of scattered radiation. The latter
depend on both the structure factor (which contains in-
formaiion on correlations) and the form factor of a set of
droplets of unknown polydispersity and shape. In addi-
tion, we can follow the evolution of the system in real
time, with all the details of the evolution being accessible.
The price we pay, however, is that we cannot reach very
small values of ¢ without a considerable loss in the sta-
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tistical accuracy of our measurements.

Our paper is organized as follows: in the next section,
we skim over key features of existing theoretical models,
and introduce some concepts we will make use of in
analyzing our experimental data. In Sec. III we provide
details about our experimental setup and finally in Sec.
IV we present our results.

II. THEORETICAL BACKGROUND

The essential ideas behind correlated growth are cap-
tured best by drawing a formal analogy between Ostwald
ripening and electrostatics. We follow Marder’s argu-
ments, originally formulated for three-dimensional sys-
tems [22]. The starting point of his statistical mechanical
model, which builds upon ideas of Weins and Cahn [19],
and Kawasaki and Ohta [35], is a static diffusion equation
with shrinking and growing droplets of spherical shape,
appearing as sink and source terms:

éﬂRl}

3 8(r—r;) . (1)

Vic(r,t)= % 4
& dt

In writing this equation, a quasistationary approxima-
tion has been assumed according to which the concentra-
tion is everywhere relaxed to its local equilibrium value.
The concentration at the surface of the ith droplet is
determined via the Gibbs-Thomson relation
c(r,t)=d,/R;, where d is a capillary length. The analo-
gy with electrostatics is evident: our problem is formally
equivalent to solving for the electrostatic potential
around conducting spheres of radii R;, the potential on
which is d,/R; respectively. Equation (1) is a Poisson
equation in which the rate of change of the volume of
each droplet plays the role of a charge. Thus shrinking
droplets have a negative charge while those that grow are
associated with a positive charge. Marder showed that in
the limit in which the average droplet size is much small-
er than the distance over which diffusion has acted (this is
true except right after the formation of a droplet), one
can obtain an average solution of the form:

e "8

c(r)=
¥
Thus the diffusion field away from a droplet has the
form of screened Coulomb potential in which the screen-
ing length £ is given by
1 172

47nR

where 7 is the droplet number density. Notice that since
the volume fraction occupied by the droplets is given by
¢=(47R>n /3), & can be expressed as £/R =(3¢) "2 so
that & diverges in the limit of vanishing ¢. Marder car-
ried out a perturbative expansion to first order in V'¢,
and was able to show by intuitive arguments that the rate
of growth of a droplet including the (averaged) presence
of all the other droplets includes the direct and medium
polarization effects.

The singular behavior of the solution of the two-
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dimensional diffusion equation precludes the use of the
strategy adopted for the three-dimensional problem,
namely, solving the ¢ =0 problem first, and then includ-
ing correlations later. Rogers and Desai handled this
singular behavior by performing an asymptotic analysis
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Here x =R /R and C is a normalization constant. This
distribution will be henceforth called the LSW distribu-
tion. Different schemes have been devised to circumvent
the singular behavior of the diffusion equation in the
finite-¢ case. Chakraverty [24] introduced a screening dis-
tance to cut off the Coulomb interaction between three-
dimensional droplets on a substrate, while Dadyburjor,
Marsh, and Glicksman [25] and Hayakawa and Family
[26] established screening by calculating analytically the
diffusion field of a droplet array. Ardell’s theory of coars-
ening circular clusters included the effect of diffusional
interactions through the introduction of an ad hoc cutoff
distance [27]. At this distance the boundary condition
fixing the concentration field to have the bulk value is
satisfied. The size distribution predicted by his model was
expectedly broader than the LSW distribution proposed
by Rogers and Desai [Eq. (2)], but agreed reasonably well
with their computer simulation. In addition, it reduced
to Eq. (2) in the limit ¢—0. Marqusee [28] included the
medium polarization effect in his model by considering
surrounding droplets as an effective medium. He added a
term —& %c(r,t) to the right-hand side of Eq. (1) turning
it into a Helmholtz equation, and thereby removing the
logarithmic divergence of the diffusion equation. He
solved his model self-consistently and obtained R ~¢!/3,
the prefactor K(¢), the screening length &(¢) for
different values of ¢, and the increasing broadening of the
scaled size distribution for increasing ¢. Zheng and Gun-
ton [29] extended Marqusee’s theory to include the direct
correlation effect. They showed that its effect is smaller
than medium polarization but that the scaled size distri-
bution is significantly changed (mainly for small radii),
and that the power-law growth ¢!/3 remains unaffected.
The authors expected their scheme to be valid for
¢ <0.01. Yao et al. [17] included both direct and medi-
um polarization correlations in their recent model. They
approximated correlation effects in a way analogous to
the Thomas-Fermi approach in Coulomb systems and ob-
tained power-law growth z!/3, and the asymptotic scaled
size distribution. The latter in particular reduces to the
LSW distribution for $—0. However, these calculations
break down for ¢ > 0.085.

In our experiments we access a regime of area fraction
where many of the assumptions made in the studies de-
scribed above are questionable. However, in the absence
of a proper theoretical framework to treat this case, we
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of the diffusion equation. As a result, they obtained a
growth law of the form R ~ (¢ /In4z)!/® and the following
scaling form for the size distribution function, which is a
generalization of the LSW distribution to two dimen-
sions:

for x <1.5,

()

[
still find the electrostatic analogy to be helpful in discuss-
ing our results.

III. EXPERIMENTAL SETUP AND MATERIALS

Our experiments were carried out by quenching a thin
layer of succinonitrile, a plastic crystal of bcc structure,
from the high-temperature homogeneous liquid phase, to
the liquid-solid coexistence region, which opens up in the
presence of impurities. Succinonitrile presents the fol-
lowing advantages: it is a nearly transparent compound,
the surface tension of the liquid-solid interface has very
small anisotropy (=0.5%), and its melting temperature is
slightly above room temperature. We used 99% pure suc-
cinonitrile purchased from Fluka. The impurities (1%)
can be regarded as the second constituent of a binary
mixture. Their presence opens up a liquid-solid coex-
istence region (43-56°C) shown schematically in Fig. 1,
in which the solid area fraction can be controlled by
varying the temperature, as in temperature-composition
phase diagrams of binary mixtures. Two processes are
involved in the evolution of the system: heat and impuri-
ty diffusion. By making the latter dominant, we ensure

>
>

Cs CL c

FIG. 1. Concentration-poor portion of the schematic temper-
ature T vs impurity concentration ¢ phase diagram of our sys-
tem. Solidus and liquidus lines (solid lines) divide the plane into
solid (S), liquid (L), and solid-liquid (S-L) coexistence regions.
Samples are quenched from L into the S-L region (dashed lines),
reaching eventually equilibrium with the solid (liquid) phase
having an impurity concentration c¢(¢;).
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FIG. 3. Evolution of a region in our system at 7°=43°C.
Snapshot times: (a) 104, (b) 260, (c) 291, (d) 342, (e) 505, (f) 536,
(g) 563, and (h) 679 min. Focusing on the central part of each
snapshot, notice the presence of two evolution processes: the
Ostwald ripening mechanism (a) and (b), and recrystallization
events such as creation (c)-(f), and disappearance (g) and (h) of
grain boundaries. The area fraction is 0.9 in this case.

in-plane diffusion, as heat can leak out of the system
through the walls of our cells. The experiments were car-
ried out in 25-um-thick samples contained in cells made
out of glass slides. The thermal conductivity of succinoni-
trile is 0.224 W/mK, which is very similar to that of the
glass slides used to manufacture our cells. However, ex-
periments carried out in cells made out of sapphire,
whose conductivity is more than ten times that of succi-
nonitrile yielded essentially the same results as those per-
formed in glass-made cells, confirming that impurity
diffusion is the dominant process in our system. The pres-
sure in the cells was maintained constant at atmospheric
value. Before each run, samples were annealed for 24 h in
an oven in order to avoid large impurity gradients. In or-
der to create many crystal seeds initially, our samples
were quenched to nearly 0 °C after which the temperature
was raised to desired values within the liquid-solid coex-
istence region. Typically about 1000 crystallites were ob-
served in the field of view after a quench. Their shape
was at this point contorted and elongated, due to the fast
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time (min)

K (10® mm3s™)

0.1 0.2 0.3 0.4 0.5 0.6

FIG. 4. (a) Power-law dependence of the average crystal ra-
dius R as a function of time for ¢=0.19 (empty circles), 0.40
(full circles), and 0.54. Straight lines are fits to the data with the
equation R"+R3=Kt. (b) Dependence of the rate constant K
on volume fraction ¢.

f(R'R)

0 0.5 1 1.5 2 2.5

FIG. 5. Distribution of grain size f(R) for ¢=0.13 (empty
circles), 0.40 (full circles), and 1.00 (crosses). The solid line is
the LSW generalized to the two-dimensional case by Rogers and
Desai. The dashed line represents the theoretical results of Lev-
itan and Domany for ¢=0.13.
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growth induced by the deep quench. In order to avoid
any influence of initial conditions and due to limits in
resolution, our measurements were taken when the num-
ber of crystals ranged from 300 to 30. Thus nearly a de-
cade in the number of crystals was spanned during each
run. The lateral dimensions of the crystals were much
larger than the layer thickness, ensuring the effective two
dimensionality of our system. During the coarsening
process, the temperature of the samples was maintained
constant with a precision of +10 mK. The area fraction
of the solid phase was constant within 3% along each
run. Patterns were observed by optical microscopy,
video recorded, and digitized for further analysis.

IV. RESULTS

In Fig. 2 we show snapshots taken at different times
during three runs, each at a different temperature 7. At
T=38°C (left), the plane is fully tiled (¢=1) by solid
crystallites of nearly polygonal shape and random crys-
tallographic orientation. Grain boundaries have been
made visible by adding a small amount of rhodamine dye
to the sample before the quench. Notice (i) the occasion-
al occurrence of very weakly stained boundaries and (ii)
the marked deviation from120° in the angles between
each of these boundaries and the two others meeting at a
vertex. This is a manifestation of the fact that different
boundaries have different line tensions. Despite this, the
evolution in this case proceeds very much along the same
lines as that of other cellular structures such as coarsen-
ing two-dimensional froths [36]: grains with less than six
sides shrink and disappear according to von Neumann’s
theorem [37], while their neighbors grow. When a grain
disappears, it alters the number of sides of some of its
neighbors and a dynamical steady state with scaling
properties is established: statistical distributions, when
properly rescaled, preserve their shape under the evolu-
tion. A detailed study of this regime of evolution, known
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FIG. 6. Radial pair distribution function g(r) .for two
different values of the area fraction ¢, 0.13 (empty circles) and
0.40 (full circles), showing the evolution of gaslike behavior for
low ¢ to liquidlike behavior at higher values of ¢. Distances are
given in units of the average radius R.
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as recrystallization, has appeared recently [38]. At high
temperatures, well-separated crystals within a liquid ma-
trix are observed. The evolution then proceeds via the
Ostwald ripening mechanism. This is shown in the cen-
tral snapshots of Fig. 2 (taken at T =54°C), where crys-
tals fill up a fraction ¢ ~0.30 of the total area. Devia-
tions from circular shape are clearly evident in the
present case (the more elongated shapes observed in the
earliest pattern are due to initial conditions; the evolution
quickly relaxes these shapes into the characteristic non-
circular morphologies of the scaling regime shown in the
second and third snapshots). Note, however, that these
deviations become smaller as the area fraction is de-
creased. At intermediate temperatures, the system is in
the solid-liquid coexistence region, and partial melting
along the grain boundaries is observed. An example of
the evolution in this case is shown in the right part of
Fig. 2. In these snapshots, taken at T'=43°C, crystals
occupy a fraction of 0.9 of the total area. Notice the con-
torted and occasional nonconvex shape of the grains. In
this regime the shape is determined by both the surface
tension of the solid-liquid interface and the particular line
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FIG. 7. Probability densities of finding two crystals both
with radii smaller or larger than R at a distance » (empty circles)
and of one having radius smaller and the other larger than R
(full circles), for $=0.13 and 0.40. Distances are given in units
of R.
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tension of the grain boundaries. The evolution is then
governed simultaneously by recrystallization processes as
well as by the Ostwald ripening mechanism (see the se-
quence of snapshots in Fig. 3). Note that recrystalliza-
tion is only relevant for very large values of ¢, when
different crystals touch one another as a result of shape
relaxation, and thus form grain boundaries.

In Fig. 4(a) we plot the cube of the average radius R as
a function of time for three different values of the volume
fraction ¢: 0.19, 0.40, and 0.54. The average is taken
over all crystals in a pattern. The data fall to a very good
approximation on straight lines, and have been fitted with
linear relations R*+Rj =Kt This confirms once again
the celebrated power-law dependence t* with a=1. We
also extracted from our data the dependence of the rate
constant K on ¢, which we show in Fig. 4(b). While K in-
creases with ¢ as expected, it is very difficult to compare
the behavior with theoretical predictions [28] since we
vary ¢ by changing the temperature of our system, and
doing so changes the microscopic kinetics of the system
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as well. Nonetheless, the relative increase in K we ob-
serve in the volume fraction range 0.10—0.40 is consistent
with theoretical predictions (these reach ¢ =0.40 only).
The measured size distribution functions f(R) with R
given in units of R are shown in Fig. 5, for ¢=0.13, 0.40,
and 1.0 (53, 49, and 38 °C, respectively), together with the
LSW distribution Eq. (2). For a given value of ¢, the
shape of f(R) does not change with time within our sta-
tistical accuracy, a fact that allows us to average mea-
surements of distributions obtained at different times dur-
ing the scaling regime. Each distribution shown in Fig. 5
is an average over ten such measurements. The distribu-
tion for ¢=0.13 is compared with recent theoretical re-
sults for this volume fraction [39]. In the last two cases,
the radii refer to those of circles having the same area as
each crystal in a pattern. Each distribution comprises
measurements on ten patterns recorded in the scaling re-
gime. As ¢ increases the distributions become flatter and
broader, in agreement with the behavior predicted by
theoretical models and computer simulations. Note that

FIG. 8. Evolution of crystals
neighboring a shrinking and
disappearing crystal: (a) pattern
at a given time and (b) the
dependence of the areas of crys-
tals as a function of time. Num-

06 1.58
( b) bers are keyed to part (a). The
b area fraction is 0.3. The picture
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K s ed.
- s
02} 1 © 152
, , , 1.49 " .
% 200 %00 600 800 0 200 400 600 800
time (sec) time (sec)
1.90
o C
—~ 185_ D) ° -
3 3
s 3
© 1.80 ° 3 ©
L)
1755 200 %00 00 800 345 200 400 600 800
time (sec) time (sec)



52 OSTWALD RIPENING IN A TWO-DIMENSIONAL SYSTEM: ... 1825

the distribution for ¢=1.0 coincides within our experi-
mental uncertainty with the area distribution of froths
[36], despite the fact that the line tension of the grain
boundaries varies from boundary to boundary.

A glance at the central part of Fig. 2 reveals that the
positions of droplets are not random. Spatial correlations
are manifested by the tendency of crystals to keep away
from each other. This is perhaps more evident when we
calculate from these patterns the radial pair distribution
function g(r), which is proportional to the probability
density of finding two crystals separated by a distance .
This function is shown in Fig. 6 for $=0.13 and 0.40,
with all distances normalized by R. In measuring g (r) in
each case, ten patterns well separated in time were aver-
aged. The broad peak observed for ¢=0.13 gives a
rough indication of the shell of nearest-neighbor crystals.
For ¢=0.40 this peak becomes considerably more pro-
nounced, and hence the shell of nearest neighbors be-
comes more well defined. This signature is reminiscent of
the structure induced by repulsive interactions in ordi-
nary fluids, in contrast to the gaslike behavior observed
for $=0.13.

Evidence for the direct correlation effect was obtained
by dividing all crystals into two classes, L and S: those
with R >R (henceforth called large) and those with
R <R (henceforth called small), respectively. We then
measured the probability densities p; .(7) of finding two
crystals in the same class (s =s’=L or S) at a distance 7,
and of finding them in different classes (s =L, s'=S or
s =8, s'=L). We plot these with empty and full circles,
respectively, in Fig. 7 for both ¢=0.13 and ¢=0.40.
Both probability densities have the same qualitative
behavior for ¢=0.13, though the probability of finding
small crystals near large ones is slightly higher. The
correlation is manifestly stronger for ¢ =0.40, where the
probability of finding small crystals near large ones is
strongly peaked at small distances and much larger than
that of finding two nearby small or large crystals.

In order to exhibit explicitly the medium polarization
effect and show the finite range of correlations, we follow
the effects of a shrinking crystal upon the evolution of its
neighbors. In Fig. 8(a) we show a pattern of crystals ob-
served in one of our runs and in Fig. 8(b) we plot the area
of some of them as a function of time [numbers are keyed
to Fig. 8(a)]. Crystal number 1 is shrinking monotonously
until it disappears. As it shrinks, crystal number 2
grows, but starts shrinking once crystal number 1 disap-
pears. This clearly demonstrates that the concept of criti-
cal radius is ill defined for sufficiently large values of ¢:
its value is a function of the local environment of the
crystal. Evidence of the finite range of correlations is fur-
nished by the evolution of other neighbors of crystal
number 1 while and after the latter shrinks. The rate of
growth of crystal number 3 is affected by the shrinkage of
crystal number 1. However, the evolution of crystal
number 4 is rather insensitive to whatever happens to
crystal number 1. If there is indeed an effect, it is buried
within the statistical error of our measurements. More
quantitatively, we observe medium polarization by study-
ing the spatial distribution of charges. To this end, we
define two-point charge-charge spatial correlation func-

tions gqq'(r)=(q(0)q’(r)>, with g’ given in units of
charge per unit area. The instantaneous charge of each
crystal was deduced from the rate of change of its area, as
obtaired from video frames taken at close intervals. Five
to ten correlation functions calculated at different stages
of evolution in the scaling regime were then averaged for
each volume fraction. To carry this out, the different
correlation functions were rescaled to the same temporal
and spatial scales by normalizing all distances by R and
charges by the condition (g?)=1. In order to cope with
the calculation of g,,(7) in our large volume fraction ex-
periments, the charge of each crystal was assumed to be
uniformly distributed along its boundary. The total
charge within shells of radius » and width Ar around each
crystal was then calculated, including only the parts of
the boundaries within the shell of all crystals intersected
by the shell. Two correlation functions g,..(7), one with
sgn(g)=sgn(q’') and the other with sgn(q)#sgn(q’), were
then calculated. In Fig. 9 we show g,,.(r) for charges of
the same sign (empty circles) and charges of opposite sign
(full circles), for ¢=0.13 and 0.40. The correlation is
much larger for short distances in the case of opposite
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FIG. 9. Radial charge-charge correlation g,.(7) as function
of distance for ¢=0.13 and 0.40. Full circles, correlations of
charges of opposite sign; empty circles, correlations of charges
of the same sign.
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FIG. 10. Snapshots of two nearby crystals, one growing and
one shrinking at $=0.30. Snapshot times: (a) 267, (b) 348, (c)
384, (d) 393, (e) 469, and (f) 575 min after the beginning of the
run. Notice the shape distortion of the growing crystal.

charges, and the peak in the correlation corresponds
roughly to the average nearest-neighbor distance.
Charges of opposite sign screen one another to keep the
system locally neutral. The screening effect is much
stronger for ¢=0.40 where out-of-phase oscillations in
both correlations are observed for distances beyond the
nearest-neighbor distance, in analogy with behavior ob-
served for ionic liquids.

The direct and medium polarization correlation effects
just discussed arise to first order in V'¢. In a large-¢ re-
gime, higher-order effects such as changes in crystal
shape and center-of-mass displacements become appre-
ciable. These effects are readily observed in our experi-
ments. In Fig. 10 we follow the evolution of two nearby
crystals. As the system evolves the small crystal shrinks
while the large one grows more rapidly in the direction of
its shrinking neighbor, becoming considerably distorted.
Finally, when the small crystal has disappeared the large
one relaxes back to a quasicircular shape. Clearly, this
behavior cannot be accounted for by a monopole approxi-
mation to the diffusion field. Imaeda and Kawasaki have
shown using a multipole expansion of the diffusion field

FIG. 11. Migration of the center of mass of crystals during
evolution for ¢ =0.54. The shaded shapes represent a digitized
image of a pattern of crystals at an early time during evolution,
while the contours represents the surviving crystals at a later
time. The pictures were taken 7 and 16 h after the beginning of
the run. The image is about 2.5 mm across.

that both effects tend to accelerate the coarsening process
[40]. Moreover they showed that the deformation is a
manifestation of the Mullins-Sekerka instability and they
computed the evolution of droplet shapes droplet defor-
mation in the two-dimensional case. The shapes obtained
by Imaeda and Kawasaki look remarkably close to those
observed in Fig. 10. Finally, we show in Fig. 11 the super-
position of two patterns of crystals, one at an early time
during the evolution (shaded shapes), while the other
(contours) represents the surviving crystals at a later
time. Displacements of the centers of mass are evident in
large crystals that have gobbled up small ones. Notice
that the displacements are directed towards the position
of the shrinking crystals. We have not studied quantita-
tively the dependence of the average displacement on
volume fraction.

In summary, our results show that diffusional interac-
tions in a two-dimensional system undergoing Ostwald
ripening at ¢70 give rise to liquidlike spatial structure
among the droplets of the minority phase for sufficiently
large values of ¢, and induce correlations between their
sizes and rates of growth. The former are weaker than the
latter in agreement with recent theoretical models.
Structural effects in particular should be taken into ac-
count in any future theoretical description of large
volume fraction situations. In addition, we have shown
that for large enough values of ¢, interactions give rise to
considerable distortions in the droplets’ shape as well as
to displacement in their centers of mass. We hope our re-
sults will stimulate further research into the problem, and
provide a useful benchmark to which more refined calcu-
lations can be compared.
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FIG. 10. Snapshots of two nearby crystals, one growing and
one shrinking at $=0.30. Snapshot times: (a) 267, (b) 348, (c)
384, (d) 393, (e) 469, and () 575 min after the beginning of the
run. Notice the shape distortion of the growing crystal.
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FIG. 11. Migration of the center of mass of crystals during
evolution for $=0.54. The shaded shapes represent a digitized
image of a pattern of crystals at an early time during evolution,
while the contours represents the surviving crystals at a later
time. The pictures were taken 7 and 16 h after the beginning of
the run. The image is about 2.5 mm across.



FIG. 2. Snapshots of part of the system coarsening at three different values of the temperature T. Left: cellular structure evolution (¢=1) at T =38°C (snapshot times from
top to bottom: 15, 110, and 540 min); center: coarsening at T =54°C where crystals are well separated, filling a fraction ¢=0.3 of the total area (times: 16, 145, and 1440 min);
right: partial melting along grain boundaries at T=43°C (times: 20, 120, and 1440 min). The images are about 2.5 mm across.



FIG. 3. Evolution of a region in our system at T =43°C.
Snapshot times: (a) 104, (b) 260, (c) 291, (d) 342, (e) 505, (f) 536,
(g) 563, and (h) 679 min. Focusing on the central part of each
snapshot, notice the presence of two evolution processes: the
Ostwald ripening mechanism (a) and (b), and recrystallization
events such as creation (c)-(f), and disappearance (g) and (h) of
grain boundaries. The area fraction is 0.9 in this case.
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FIG. 8. Evolution of crystals
neighboring a shrinking and
disappearing crystal: (a) pattern
at a given time and (b) the
dependence of the areas of crys-
tals as a function of time. Num-
bers are keyed to part (a). The
area fraction is 0.3. The picture
was taken 1 h after the run start-
ed.



